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The motion of simple domain walls and of more complex magnetic textures in the presence of a transport
current is described by the Landau-Lifshitz-Slonczewski �LLS� equations. Predictions of the LLS equations
depend sensitively on the ratio between the dimensionless material parameter � which characterizes nonadia-
batic spin-transfer torques and the Gilbert damping parameter �. This ratio has been variously estimated to be
close to zero, close to one, and large compared to one. By identifying � as the influence of a transport current
on �, we derive a concise, explicit, and relatively simple expression which relates � to the band structure and
Bloch state lifetimes of a magnetic metal. Using this expression we demonstrate that intrinsic spin-orbit
interactions lead to intraband contributions to � which are often dominant, and can be �i� estimated with some
confidence and �ii� interpreted using the “breathing Fermi-surface” model.
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I. INTRODUCTION

An electric current can influence the magnetic state of a
ferromagnet by exerting a spin-transfer torque �STT� on the
magnetization.1–3 This effect occurs whenever currents travel
through noncollinear magnetic systems and is therefore
promising for magnetoelectronic applications. Indeed, STTs
have already been exploited in a number of technological
devices.4 Partly for this reason and partly because the quan-
titative description of order-parameter manipulation by out-
of-equilibrium quasiparticles poses great theoretical chal-
lenges, the study of the STT effect has developed into a
major research subfield of spintronics.

Spin transfer torques are important in both magnetic mul-
tilayers, where the magnetization changes abruptly,5 and in
magnetic nanowires, where the magnetization changes
smoothly.6 Theories of the STT in systems with smooth mag-
netic textures identify two different types of spin transfer. On
one hand, the adiabatic or Slonczewski3 torque results when
quasiparticle spins follow the underlying magnetic landscape
adiabatically. It can be mathematically expressed as �vs ·��s0,
where s0 stands for the magnetization and vs is the “spin
velocity,” which is proportional to the charge drift velocity,
and hence to the current and the applied electric field. The
microscopic physics of the Slonczewski spin torque is
thought to be well understood,5–7 at least8 in systems with
weak spin-orbit coupling. A simple angular-momentum con-
servation argument argues that in the absence of spin-orbit
coupling vs=�sE /es0, where s0 is the magnetization, �s is
the spin conductivity, and E is the electric field. However,
spin-orbit coupling plays an essential role in real magnetic
materials and hence the validity of this simple expression for
vs needs to be tested by more rigorous calculations.

The second spin-transfer torque in continuous media,
�s0� �vs ·��s0, acts in the perpendicular direction and is fre-
quently referred to as the nonadiabatic torque.9 Unfortu-
nately, the name is a misnomer in the present context. There
are two contributions that have the preceding form. The first

is truly nonadiabatic and occurs in systems in which the
magnetization varies too rapidly in space for the spins of the
transport electrons to follow the local magnetization direc-
tion as they traverse the magnetization texture. For wide do-
main walls, these effects are expected to be small.10 The
contribution of interest in this paper is a dissipative contri-
bution that occurs in the adiabatic limit. The adiabatic torque
discussed above is the reactive contribution in this limit. As
we discuss below, processes that contribute to magnetic
damping, whether they derive from spin-orbit coupling or
spin-dependent scattering, also give a spin-transfer torque
parametrized by � as above. In this paper, we follow the
common convention and refer to this torque as nonadiabatic.
However, it should be understood that it is a dissipative spin-
transfer torque that is present in the adiabatic limit.

The nonadiabatic torque plays a key role in current-driven
domain-wall dynamics, where the ratio between � and the
Gilbert parameter � can determine the velocity of domain
walls under the influence of a transport current. There is no
consensus on the magnitude of the parameter �.6,11 Although
there have been a few theoretical studies12–14 of the STT in
toy models, the relationship between toy model STTs and
STTs in either transition-metal ferromagnets or ferromag-
netic semiconductors is far from clear. As we will discuss,
the toy models most often studied neglect spin-orbit interac-
tions in the band structure of the perfect-crystal, namely in-
trinsic spin-orbit interactions, which can alter STT physics
qualitatively.

The main objectives of this paper are �i� to shed new light
on the physical meaning of the nonadiabatic STT by relating
it to the change in magnetization damping due to a transport
current, �ii� to derive a concise formula that can be used to
evaluate � in real materials from first principles, and �iii� to
demonstrate that � and � have the same qualitative depen-
dence on disorder �or temperature� even though their ratio
depends on the details of the band structure. As a by-product
of our theoretical study, we find that the expression for vs in
terms of the spin conductivity may not always be accurate in
materials with strong spin-orbit coupling.
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We begin in Sec. II by reviewing and expanding on mi-
croscopic theories of �, �, and vs. In short, our microscopic
approach quantifies how the micromagnetic energy of an in-
homogeneous ferromagnet is altered in response to external
rf fields and dc transport currents which drive the magneti-
zation direction away from local equilibrium. These effects
are captured by the spin-transfer torques, damping torques,
and effective magnetic fields that appear in the Landau-
Lifshitz-Slonczewski �LLS� equation. By relating magnetiza-
tion dynamics to effective magnetic fields, we derive explicit
expressions for �, �, and vs in terms of microscopic param-
eters. Important contributions to these material parameters
can be understood in clear physical terms using the breathing
Fermi-surface model.15 Readers mainly interested in a quali-
tative explanation for our findings may skip directly to Sec.
VIII where we discuss our main results in that framework.
Regardless of the approach, the nonadiabatic STT can be
understood as the change in the Gilbert damping contribution
to magnetization dynamics when the Fermi sea quasiparticle
distribution function is altered by the transport electric field.
The outcome of this insight is a concise analytical formula
for � which is simple enough that it can be conveniently
combined with first-principles electronic structure calcula-
tions to predict � values in particular materials.16

In Secs. III–V we apply our expression for � to model
ferromagnets. In Sec. III we perform a necessary reality
check by applying our theory of � to the parabolic band
Stoner ferromagnet, the only model for which more rigorous
fully microscopic calculations13,14 of � have been completed.
Section IV is devoted to the study of a two-dimensional �2D�
electron-gas ferromagnet with Rashba spin-orbit interactions.
Studies of this model provide a qualitative indication of the
influence of intrinsic spin-orbit interactions on the nonadia-
batic STT. We find that, as in the microscopic theory17,18 for
�, spin-orbit interactions induce intraband contributions to �
which are proportional to the quasiparticle lifetimes. These
considerations carry over to the more sophisticated four-band
spherical model that we analyze in Sec. V; there our calcu-
lation is tailored to �Ga,Mn�As. We show that intraband
�conductivitylike� contributions are prominent in the four-
band model for experimentally relevant scattering rates.

Section VI discusses the phenomenologically important
� /� ratio for real materials. Using our analytical results de-
rived in Sec. II �or Sec. VIII�, we are able to reproduce and
extrapolate trends expected from toy models which indicate
that � /� should vary across materials in approximately the
same way as the ratio between the itinerant spin density and
the total spin density. We also suggest that � and � may have
the opposite signs in systems with both holelike and elec-
tronlike carriers. We present concrete results for �Ga,Mn�As,
where we obtain � /��0.1. This is reasonable in view of the
weak spin polarization and the strong spin-orbit coupling of
valence-band holes in this material.

Section VII describes the generalization of the torque-
correlation formula employed in ab initio calculations of the
Gilbert damping to the case of the nonadiabatic spin-transfer
torque. The torque-correlation formula incorporates scatter-
ing of quasiparticles simply by introducing a phenomeno-
logical lifetime for the Bloch states and assumes that the
most important electronic transitions occur between states

near the Fermi surface in the same band. Our ability to make
quantitative predictions based on this formula is limited
mainly by an incomplete understanding of Bloch state scat-
tering processes in real ferromagnetic materials. These sim-
plifications give rise to ambiguities and inaccuracies that we
dissect in Sec. VII. Our assessment indicates that the torque-
correlation formula for � is most accurate at low disorder
and relatively weak spin-orbit interactions.

Section VIII restates and complements the effective-field
calculation explained in Sec. II. Within the adiabatic approxi-
mation, the instantaneous energy of a ferromagnet may be
written in terms of the instantaneous occupation factors of
quasiparticle states. We determine the effect of the external
perturbations on the occupation factors by combining the
relaxation-time approximation and the master equation. In
this way we recover the results of Sec. II and are able to
interpret the intraband contributions to � in terms of a gen-
eralized breathing Fermi-surface picture. Section IX contains
a brief summary which concludes this work.

II. MICROSCOPIC THEORY OF �, �, AND vs

The Gilbert damping parameter �, the nonadiabatic spin-
transfer torque coefficient �, and the spin velocity vs appear
in the generalized Landau-Lifshitz-Gilbert expression for
collective magnetization dynamics of a ferromagnet under
the influence of an electric current:

��t + vs · ���̂ − �̂ � Heff = − ��̂ � �t�̂ − ��̂ � �vs · ���̂ .

�1�

In Eq. �1� Heff is an effective magnetic field which we elabo-

rate on below and �̂=s0 /s0���x ,�y ,1− ��x
2+�y

2� /2� is the
direction of the magnetization.19 Equation �1� describes the
slow dynamics of smooth magnetization textures in the pres-
ence of a weak electric field which induces transport cur-
rents. It explicitly neglects the dynamics of the magnetiza-
tion magnitude which is implicitly assumed to be negligible.
For small deviations from the easy direction �which we take
to be the ẑ direction�, it reads

Heff,x = ��t + vs · ���y + ���t + �vs · ���x,

Heff,y = − ��t + vs · ���x + ���t + �vs · ���y . �2�

The gyromagnetic ratio has been absorbed into the units of
the field Heff so that this quantity has inverse time units. We
set �=1 throughout.

In this section we relate the �, �, and vs parameters to
microscopic features of the ferromagnet by considering the
transverse total spin response function. For a technically
more accessible �yet less rigorous� theory of � and �, we
refer to Sec. VIII. The transverse spin response function
studied here describes the change in the micromagnetic en-
ergy due to the departure of the magnetization away from its
equilibrium direction, where equilibrium is characterized by
the absence of currents and external rf fields. This change in
energy defines an effective magnetic field which may then be
identified with Eq. �2�, thereby allowing us to microscopi-
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cally determine �, �, and vs. To first order in frequency �,
wave vector q, and electric field, the transverse spin response
function is given by

S0�̂a = �
b

	a,bHext,b � �
b

�	a,b
�0� + �	a,b

�1� + �vs · q�	a,b
�2��Hext,b,

�3�

where a ,b� �x ,y�, Hext is the external magnetic field with
frequency � and wave vector q, S0=s0V is the total spin of
the ferromagnet �V is the sample volume�, and 	 is the trans-
verse spin-spin response function in the presence of a uni-
form time-independent electric field:

	a,b�q,�;vs� = i	
0




dt	 dr exp�i�t − iq · r�

�
�Sa�r,t�,Sb�0,0��� . �4�

In Eq. �3�, 	�0�=	�q=0,�=0;E=0� describes the spin re-
sponse to a constant uniform external magnetic field in ab-
sence of a current, 	�1�=lim�→0	�q=0,� ;E=0� /� charac-
terizes the spin response to a time-dependent uniform
external magnetic field in absence of a current, and 	�2�

=limq,vs→0	�q ,�=0;E� /q ·vs represents the spin response to
a constant nonuniform external magnetic field combined
with a constant uniform electric field E. Note that first-order
terms in q are allowed by symmetry in presence of an elec-
tric field. In addition, 
 � is a thermal and quantum-
mechanical average over states that describe a uniformly
magnetized current carrying ferromagnet.

The approach underlying Eq. �3� comprises a linear-
response theory with respect to an inhomogeneous magnetic
field followed by a linear-response theory with respect to an
electric field. Alternatively, one may treat the electric and
magnetic perturbations on an equal footing without predeter-
mined ordering; for further considerations on this matter we
refer to Appendix A.

In the following we emulate and appropriately generalize
a procedure outlined elsewhere.17 First, we recognize that in
the static limit and in absence of a current the transverse
magnetization responds to the external magnetic field by ad-
justing its orientation to minimize the total energy including
the internal energy Eint and the energy due to coupling with

the external magnetic field, Eext=−S0�̂ ·Hext. It follows that

	a,b
�0� =S0

2��2Eint /��̂a��̂b�−1 and thus Hint,a=−�1 /S0��Eint /
��̂a=−S0�	�0��a,b

−1 �̂b, where Hint is the internal energy contri-
bution to the effective magnetic field. Multiplying Eq. �3� on
the left by �	�0��−1 and using Heff=Hint+Hext, we obtain a
formal equation for Heff:

Heff,a = �
b

�La,b
�1��t + La,b

�2��vs · ����̂b, �5�

where

L�1� = − iS0�	�0��−1	�1��	�0��−1,

L�2� = iS0�	�0��−1	�2��	�0��−1. �6�

Identifying Eqs. �2� and �5� results in concise microscopic
expressions for �, �, and vs:

� = Lx,x
�1� = Ly,y

�1� ,

� = Lx,x
�2� = Ly,y

�2� ,

1 = Lx,y
�2� ⇒ vs · q = iS0��	�0��−1	�	�0��−1�x,y . �7�

In the third line of Eq. �7� we have combined the second line
of Eq. �6� with 	�2�=	 / �vs ·q�.

When applying Eq. �7� to realistic conducting ferromag-
nets, one must invariably adopt a self-consistent mean-field
�Stoner� theory description of the magnetic state derived
within a spin-density-functional theory �SDFT�
framework.20,21 In SDFT the transverse spin response func-
tion is expressed in terms of Kohn-Sham quasiparticle re-
sponse to both external and induced magnetic fields; this
allows us to transform17 Eq. �7� into

� =
1

S0
lim
�→0

Im�	̃+,−
QP �q = 0,�,E = 0��

�
,

� = −
1

S0
lim

vs,q→0

Im�	̃+,−
QP �q,� = 0,E��

q · vs
,

vs · q = −
1

S0
Re�	̃+,−

QP �q,� = 0,E�� , �8�

where we have used22 	a,b
�0� =�a,bS0 / �̄, and

	̃+,−
QP �q,�;E� =

1

2�
i,j

f j − f i


i − 
 j − � − i�

j�S+�0�r�eiq·r�i�

�
i�S−�0�r�e−iq·r�j� �9�

is the quasiparticle response to changes in the direction of
the exchange-correlation effective magnetic field.23 To esti-
mate � this response function should be evaluated in the
presence of an electric current. In the derivation of Eq. �8�
we have made use of S�=Sx� iSy. Physically, “Im” and “Re”
indicate that the Gilbert damping and the nonadiabatic STT
are dissipative while the adiabatic STT is reactive. Further-
more, in the third line it is implicit that we expand Re�	̃QP�
to first order in q and E.

In Eq. �9�, S� is the spin-rising/lowering operator, �i�, 
i,
and f i are the Kohn-Sham eigenstates, eigenenergies, and
Fermi factors in presence of spin-dependent disorder, and
�0�r� is the difference in the magnetic ground state between
the majority-spin and minority-spin exchange-correlation
potentials—the spin-splitting potential. This quantity is al-
ways spatially inhomogeneous at the atomic scale and is
typically larger in atomic regions than in interstitial regions.
Although the spatial dependence of �0�r� plays a crucial role
in realistic ferromagnets, we replace it by a phenomenologi-
cal constant �0 in the toy models we discuss below.

Our expression of vs in terms of the transverse spin re-
sponse function may be unfamiliar to readers that are famil-
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iar with the argument given in Sec. I of this paper in which
vs is determined by the divergence in spin current. This ar-
gument is based on the assumption that the �transverse� an-
gular momentum lost by spin polarized electrons traversing
an inhomogeneous ferromagnet is transferred to the magne-
tization. However, this assumption fails when spin angular
momentum is not conserved as it is not in the presence of
spin-orbit coupling. In general, part of the transverse spin
polarization lost by the current carrying quasiparticles is
transferred to the lattice rather than to collective magnetic
degrees of freedom8 when spin-orbit interactions are present.
It is often stated that the physics of spin nonconservation is
captured by the nonadiabatic STT; however, the nonadiabatic
STT per se is limited to dissipative processes and cannot
describe the changes in the reactive spin torque due to spin-
flip events. Our expression in terms of the transverse spin
response function does not rely on spin conservation, and
while it agrees with the conventional picture24 in simplest
cases �see below�, it departs from it when, e.g., intrinsic spin-
orbit interactions are strong.

In this paper we incorporate the influence of an electric
field by simply shifting the Kohn-Sham orbital occupation
factors to account for the energy deviation of the distribution
function in a drifting Fermi sea:

f i � f �0��
i + Vi� � f �0��
i� + Vi � f �0�/�
i, �10�

where Vi is the effective energy shift for the ith eigenenergy
due to acceleration between scattering events by an electric
field and f �0� is the equilibrium Fermi factor. This approxi-
mation to the steady state induced by an external electric
field is known to be reasonably accurate in many circum-
stances, for example, in theories of electrical transport prop-
erties, and it can be used24 to provide a microscopic deriva-
tion of the adiabatic spin-transfer torque. As we discuss
below, this ansatz provides a result for � which is suffi-
ciently simple that it can be combined with realistic ab initio
electronic structure calculations to estimate � values in par-
ticular magnetic metals. We support this ansatz by demon-
strating that it agrees with full nonlinear-response calcula-
tions in the case of toy models for which results are
available.

Using the Cauchy identity, 1 / �x− i��=1 /x+ i���x�, and
�f �0� /�
�−��
�, we obtain

Im�	̃+,−
QP � �

�

2 �
i,j

�� − Vj,i��
j�S+�0�r�eiq·r�i��2��
i − 
F�

���
 j − 
F� ,

Re�	̃+,−
QP � � −

1

2�
i,j

�
j�S+�0�r�eiq·r�i��2

�
Vj��
 j − 
F� − Vi��
i − 
F�


i − 
 j
, �11�

where we have defined the difference in transport deviation
energies by

Vj,i 
 Vj − Vi. �12�

In the first line of Eq. �11�, the two terms within the square
brackets correspond to the energy of particle-hole excitations
induced by radio frequency magnetic and static electric
fields, respectively. The imaginary part selects scattering pro-
cesses that relax the spin of the particle-hole pairs mediated
either by phonons or by magnetic impurities.25 Substituting
Eq. �11� into Eq. �8� we can readily extract �, �, and vs:

� =
�

2S0
�
i,j

�
j�S+�0�r��i��2��
i − 
F���
 j − 
F� ,

� = lim
q,vs→0

�

2S0q · vs
�
i,j

�
j�S+�0�r�eiq·r�i��2Vj,i��
i − 
F�

���
 j − 
F� ,

vs · q =
1

2S0
�
i,j

�
j�S+�0�r�eiq·r�i��2
Vj��
 j − 
F� − Vi��
i − 
F�


i − 
 j
,

�13�

where we have assumed a uniform precession mode for the
Gilbert damping.

Equations �13� and �11� identify the nonadiabatic STT as
a correction to the Gilbert damping in the presence of an
electric current; in other words, the magnetization damping
at finite current is given by the sum of the Gilbert damping
and the nonadiabatic STT. We feel that this simple interpre-
tation of the nonadiabatic spin-transfer torque has not re-
ceived sufficient emphasis in the literature.

Strictly speaking the influence of a transport current on
magnetization dynamics should be calculated by considering
nonlinear-response of transverse spin to both effective mag-
netic fields and the external electric field which drives the
transport current. Our approach, in which we simply alter the
occupation probabilities which appear in the transverse spin
response function, is admittedly somewhat heuristic. We
demonstrate below that it gives approximately the same re-
sult as the complete calculation for the case of the very sim-
plistic model for which that complete calculation has been
carried out.

In Eq. �13�, the eigenstates indexed by i are not Bloch
states of a periodic potential but instead the eigenstates of the
Hamiltonian that includes all of the static disorder. Although
Eq. �13� provides compact expressions valid for arbitrary
metallic ferromagnets, its practicality is hampered by the fact
that the characterization of disorder is normally not precise
enough to permit a reliable solution of the Kohn-Sham equa-
tions with arbitrary impurities. An approximate yet more
tractable treatment of disorder consists of the following
steps: �i� replace the actual eigenstates of the disordered sys-
tem by Bloch eigenstates corresponding to a pure crystal,
e.g., �i�→ �k ,a�, where k is the crystal momentum and a is
the band index of the perfect crystal, �ii� switch Vi to Va
=�k,avk,a ·eE, where � is the Bloch state lifetime and vk,a
=�
k,a /�k is the quasiparticle group velocity, and �iii� sub-
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stitute the ��
k,a−
F� spectral function of a Bloch state by a
broadened spectral function evaluated at the Fermi energy:
��
k,a−
F�→Aa�
F ,k� / �2��, where

Aa�
F,k� =
�k,a

�
F − 
k,a�2 +
�k,a

2

4

, �14�

and �a,k=1 /�a,k is the inverse of the quasiparticle lifetime.
This minimal prescription can be augmented by introducing
impurity vertex corrections in one of the spin-flip operators,
which restores an exact treatment of disorder in the limit of
dilute impurities. This task is for the most part beyond the
scope of this paper �see next section, however�. The expres-
sion for � in Eq. �13� has already been discussed in a previ-
ous paper;17 hence from here on we shall concentrate on the
expression for � which now reads

��0� = lim
q,vs→0

1

8�s0
�
a,b
	

k
�
k + q,b�S+�0�r�

��k,a��2Aa�
F,k�Ab�
F,k + q�

�
�vk+q,b�k+q,b − vk,a�k,a� · eE

q · vs
, �15�

where we have used �k→V�dDk / �2��D
V�k with D as the
dimensionality, V as the volume, and

q · vs =
1

2s0
�
a,b
	

k
�
k + q,b�S+�0�r��k,a��2

�
evk+q,b�k+q,b��
F − 
k+q,b� − evk,a�k,a��
F − 
k,a�


k,a − 
k+q,b
.

�16�

In Eq. �15� the superscript “0” is to remind of the absence of
impurity vertex corrections. In addition, we recall that s0
=S0 /V is the magnetization of the ferromagnet and �ak� is a
band eigenstate of the ferromagnet without disorder. It is
straightforward to show that Eq. �16� reduces to the usual
expression vs=�sE / �es0� for vanishing intrinsic spin-orbit
coupling. However, we find that in presence of spin-orbit
interaction Eq. �16� is no longer connected to the spin con-
ductivity. Determining the precise way in which Eq. �16�
departs from the conventional formula in real materials is an
open problem that may have fundamental and practical re-
percussions. Expanding the integrand in Eq. �15� to first or-
der in q and rearranging the result, we arrive at

��0� = −
1

8�s0q · vs
�
a,b
	

k
��
a,k�S+�0�r��b,k��2

+ �
a,k�S−�0�r��b,k��2�Aa�
F,k�Ab��
F,k��vk,a · eE�

��vk,b · q��a −
1

4�s0q · vs
�
a,b
	

k
Re�
b,k�S−�0�r��a,k�

�
a,k�S+�0�r�q · �k�b,k�

+ �S+ ↔ S−��Aa�
F,k�Ab�
F,k��vk,a · eE��a, �17�

where A��
F ,k�
2�
F−
k,a��a / ��
F−
k,a�2+�a
2 /4�2 stands

for the derivative of the spectral function and we have ne-
glected �� /�k. Equation �17� �or Eq. �15�� is the central
result of this work and it provides a gateway to evaluate the
nonadiabatic STT in materials with complex band
structures;16 for a diagrammatic interpretation, see Fig. 1. An
alternative formula with a similar aspiration has been pro-
posed recently,26 yet that formula ignores intrinsic spin-orbit
interactions and relies on a detailed knowledge of the disor-
der scattering mechanisms. In the following three sections
we apply Eq. �17� to three different simplified models of
ferromagnets. For a simpler-to-implement approximate ver-
sion of Eq. �15� or Eq. �17�, we refer to Sec. VI.

III. NONADIABATIC STT FOR THE PARABOLIC TWO-
BAND FERROMAGNET

The model described in this section bears little resem-
blance to any real ferromagnet. Yet, it is the only model in
which rigorous microscopic results for � are presently avail-
able, thus providing a valuable test bed for Eq. �17�. The
mean-field Hamiltonian for itinerant carriers in a two-band
Stoner model with parabolic bands is simply

H�k� =
k2

2m
− �0Sz, �18�

where �0 is the exchange field and Sa,b
z =�a,b sgn�a�. In this

model the eigenstates have no momentum dependence and
hence Eq. �17� simplifies to

�vs · q���0� = −
�0

2

2�s0
�

a
	

k
Aa�
F,k�A−a� �
F,k�

k · q

m

k · eE

m
�k,a,

�19�

where a= + �−� for majority �minority� spins, vk,�=k /m, and
S�=Sx� iSy with Sa,b

x =�a,b. Also, from here on repeated in-
dexes will imply a sum. Taking �0�EF and �0�1 /�, the
momentum integral in Eq. �19� is performed in the complex

eVa,b eVa,b

a,k;ω

a,k;ω

eVa,bb, ω+k+q;

S−

S −

S+

S+

ω
(a)

(b)

b,k;ω +ωn

n

n

n

ω

FIG. 1. Feynman diagrams for �a� � and �b� ��q ·vs�, the latter
with a heuristic consideration of the electric field �for a more rigor-
ous treatment, see Appendix A�. Solid lines correspond to the
Green’s functions of the band quasiparticles in the Born approxima-
tion, dashed lines stand for the magnon of frequency � and wave
vector q, �n is the Matsubara frequency, and eVa,b is the difference
in the transport deviation energies.
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energy plane using a keyhole contour around the branch cut
that stems from the three-dimensional density of states:

�vs · q���0� = −
�0

2

2�s0

2eE · q

3m
	

0




��
�Aa�
F,a − 
�

�A−a� �
F,−a − 
�
�k,a

�
eE · q

6m�0s0
sgn�a��a
F,a�a�−a

=
eE · q

2m�0s0
�n↑�↑�↓ − n↓�↓�↑� , �20�

where 
F,a=
F+sgn�a��0, �a is the spin-dependent density of
states at the Fermi surface, na=2�a
F,a /3 is the correspond-
ing number density, and �a
�a /2. The factor 1/3 on the first
line of Eq. �20� comes from the angular integration. In the
second line of Eq. �20� we have neglected a term that is
smaller than the one retained by a factor of �0

2 / �12
F
2�; such

extra term �which would have been absent in a two-
dimensional version of the model� appears to be missing in
previous work.13,14

The simplicity of this model enables a partial incorpora-
tion of impurity vertex corrections. By adding to ��0� the
contribution from the leading-order vertex correction ���1��,
we shall recover the results obtained previously for this
model by a full calculation of the transverse spin response
function. As it turns out, ��1� is qualitatively important be-
cause it ensures that only spin-dependent impurities contrib-
ute to the nonadiabatic STT in the absence of an intrinsic
spin-orbit interaction. In Appendix B we derive the following
result:

�vs · q���1� =
e�0

2

4�s0
	

k,k�
ui Re�Sa,b

+ Sb,b�
i Sb�,a�

− Sa�,a
i �

Aa�
F,k�
�
F − 
k�,a��

�� Ab�
F,k + q�
�
F − 
k�+q,b��

Vb,a +
Ab��
F,k� + q�

�
F − 
k+q,b�
Vb�,a� ,

�21�

where ui
niwi
2�i=0,x ,y ,z�, ni is the density of scatterers, wi

is the Fourier transform of the scattering potential, and the
overline denotes an average over different disorder
configurations.13 Also, Va,b= ��bvk+q,b−�avk,a� ·eE. Expand-
ing Eq. �21� to first order in q, we arrive at

�vs · q���1� = −
�0

2

2�s0
�u0 − uz�	

k,k�

Aa�
F,k�

F − 
k�,a

� A−a� �
F,k�

F − 
k�,−a

+
A−a��F,k��
�
F − 
k,−a�2�k · q

m

k · eE

m
�k,a. �22�

In the derivation of Eq. �22� we have used S�=Sx� iSy and
assumed that ux=uy 
ux,y, so that ui Re�Sa,b

x Sb,b�
i Sb�,a�

x Sa�,a
i �

= �u0−uz��a,a��b,b��a,−b. In addition, we have used
�k,k�F��k� , �k���kikj�=0. The first term inside the square
brackets of Eq. �22� can be ignored in the weak disorder
regime because its contribution is linear in the scattering
rate, as opposed to the second term, which contributes at
zeroth order. Then,

�vs · q���1� = −
�0

2

�s0
�u0 − uz�	

k,k�

Aa�
F,k�A−a�
F,k��
�
F − 
k�,a��
F − 
k,−a�2

�
k · q

m

k · eE

m
�k,a

� −
�0

2

�s0
�u0 − uz�

2eE · q

3m
	

−





d
d
���
���
��

�
Aa�
F,a − 
�A−a�
F,−a − 
��

�
F − 
a���
F − 
−a�2 
�a

� − ��u0 − uz�
eE · q

2m�0s0
sign�a�na�a�−a. �23�

Combining this with Eq. �20�, we get

�vs · q�� � �vs · q���0� + �vs · q���1� =
eE · q

2ms0�0
�n↑�↑�↓

− n↓�↓�↑ − ��u0 − uz��n↑�↑�↓ − n↓�↓�↑��

= �
eE · q

ms0�0
�n↑�↑�uz�↓ + ux,y�↑� − n↓�↓�uz�↑ + ux,y�↓�� ,

�24�

where we have used �a=���u0+uz��a+2ux,y�−a�. In this
model it is simple to solve Eq. �16� for vs analytically,
whereupon Eq. �24� agrees with the results published by
other authors in Refs. 13 and 14 from full nonlinear-response
function calculations. However, we reiterate that in order to
reach such agreement we had to neglect a term of order
�0

2 /
F
2 in Eq. �20�. This extra term is insignificant in all but

nearly half metallic ferromagnets.

IV. NONADIABATIC STT FOR A MAGNETIZED TWO-
DIMENSIONAL ELECTRON GAS

The model studied in the previous section misses the in-
trinsic spin-orbit interaction that is inevitably present in the
band structure of actual ferromagnets. Furthermore, since in-
trinsic spin-orbit interaction is instrumental for the Gilbert
damping at low temperatures, a similarly prominent role may
be expected in regards to the nonadiabatic spin-transfer
torque. Hence, the present section is devoted to investigate
the relatively unexplored26,27 effect of intrinsic spin-orbit in-
teraction on �. The minimal model for this enterprise is the
two-dimensional electron-gas ferromagnet with Rashba spin-
orbit interaction, represented by

H�k� =
k2

2m
− b · S , �25�

where b= ��ky ,−�kx ,�0�, � is the Rashba spin-orbit coupling
strength, and �0 is the exchange field.

The eigenspinors of this model are

�+ ,k� = �cos��/2�,− i exp�i��sin��/2��

and
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�− ,k� = �sin��/2�,i exp�i��cos��/2�� ,

where the spinor angles are defined through cos �
=�0 /��2k2+�0

2 and tan �=ky /kx. The corresponding
eigenenergies are Ek�=k2 / �2m����0

2+�2k2. Therefore, the
band velocities are given by vk�=k�1 /m��2 /��2k2+�0

2�
=k /m�. Disregarding the vertex corrections, the nonadia-
batic spin torque of this model may be evaluated analytically
starting from Eq. �17�. We find that �see Appendix C�:

�vs · q���0� �
�0

2eE · q

8�s0
� m2

4m+m−
�1 +

�0
2

b2 � 1

b2 +
1

4

�2kF
2�0

2

b6 �
+

�0
2eE · q

8�s0
�1

2

m2

m+
2

�2kF
2

b2 �1 −
�m+

m

�0
2

b2 ��2

+
1

2

m2

m−
2

�2kF
2

b2 �1 −
�m−

m

�0
2

b2 ��2� , �26�

where b=��2kF
2 +�0

2�kF=�2m
F�, and �m�=m−m�. As we
explain in Appendix C, Eq. �26� applies for �kF ,�0 ,1 /�
�
F; for a more general analysis, Eq. �17� must be solved
numerically �e.g., see Fig. 2�. Equation �26� reveals that in-
trinsic spin-orbit interaction enables intraband contributions
to �, whose signature is the O��2� dependence on the second
line. In contrast, the interband contributions appear as O��0�.
Since vs itself is linear in the scattering time, it follows that
� is proportional to the electrical conductivity in the clean
regime and the resistivity in the disordered regime, much
like the Gilbert damping �. We expect this qualitative feature
to be model independent and applicable to real ferromagnets.

V. NONADIABATIC STT FOR (Ga,Mn)As

In this section we shall apply Eq. �17� to a more sophis-
ticated model which provides a reasonable description of �II-
I,Mn�V magnetic semiconductors.28 Since the orbitals at the
Fermi energy are very similar to the states near the top of the
valence band of the host �III,V� semiconductor, the elec-
tronic structure of �III,Mn�V ferromagnets is remarkably
simple. Using a p-d mean-field theory model for the ferro-
magnetic ground state and a four-band spherical model for
the host semiconductor band structure, Ga1−xMnxAs may be
described by

H�k� =
1

2m
���1 +

5

2
�2�k2 − 2�3�k · S�2� + �0Sz, �27�

where S is the spin operator projected onto the J=3 /2 total
angular-momentum subspace at the top of the valence band
and ��1=6.98,�2=�3=2.5� are the Luttinger parameters for
the spherical approximation to the valence bands of GaAs. In
addition, �0=JpdsNMn=Jpds0 is the exchange field, Jpd
=55 meV nm3 is the p-d exchange coupling, s=5 /2 is the
spin of Mn ions, NMn=4x /a3 is the density of Mn ions, and
a=0.565 nm is the lattice constant of GaAs. We solve Eq.
�27� numerically, and input the outcome in Eqs. �16� and
�17�.

The results are summarized in Fig. 3. We find that the
intraband contribution dominates as a consequence of the
strong intrinsic spin-orbit interaction, much like for the Gil-
bert damping.18 Incidentally, � barely changes regardless of
whether the applied electric field is along the easy axis of the
magnetization or perpendicular to it.

0.00 0.05 0.10 0.15 0.20
1/(εFτ)
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0.20

0.30

0.40

0.50

β
∆0=0.5εF ; λkF=0.05εF

intra−band
inter−band
total

FIG. 2. �Color online� Magnetized two-dimensional electron gas
�M2DEG�: interband contribution, intraband contribution, and the
total nonadiabatic STT for a M2DEG. In this figure the exchange
field dominates over the spin-orbit splitting. At higher disorder the
interband part �proportional to resistivity� dominates while at low
disorder the interband part �proportional to conductivity� overtakes.
For simplicity, the scattering time � is taken to be the same for all
subbands.

0.00 0.10 0.20 0.30
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x=0.08 ; p=0.4 nm
−3

FIG. 3. �Color online� GaMnAs: ��0� for E perpendicular to the
easy axis of magnetization �ẑ�. x and p are the Mn fraction and the
hole density, respectively. The intraband contribution is consider-
ably larger than the interband contribution due to the strong intrin-
sic spin-orbit interaction. Since the four-band model typically over-
estimates the influence of intrinsic spin-orbit interaction, it is likely
that the dominion of intraband contributions be reduced in the more
accurate six-band model. By evaluating � for E � ẑ �not shown� we
infer that it does not depend significantly on the relative direction
between the magnetic easy axis and the electric field.

NONADIABATIC SPIN-TRANSFER TORQUE IN REAL… PHYSICAL REVIEW B 79, 104416 �2009�

104416-7



VI. � Õ� IN REAL MATERIALS

The preceding three sections have been focused on testing
and analyzing Eq. �17� for specific models of ferromagnets.
In this section we return to more general considerations and
survey the phenomenologically important quantitative rela-
tionship between � and � in realistic ferromagnets, which
always have intrinsic spin-orbit interactions. We begin by
recollecting the expression for the Gilbert damping coeffi-
cient derived elsewhere:17

� =
1

8�s0
�
a,b
	

k
�
b,k�S+�0�a,k��2Aa�
F,k�Ab�
F,k� ,

�28�

where we have ignored disorder vertex corrections. This ex-
pression is to be compared with Eq. �15�; for pedagogical
purposes we discuss intraband and interband contributions
separately.

Starting from Eq. �15� and expanding the integrand to first
order in q, we obtain

�intra =
1

8�s0
	

k
�
a,k�S+�0�a,k��2Aa�
F,k�2

e�aqi�ki
vk,a

j Ej

q · vs
,

�29�

where we have neglected the momentum dependence of the
scattering lifetime and a sum over repeated indices is im-
plied. Remarkably, only matrix elements that are diagonal in
momentum space contribute to �intra; the implications of this
will be highlighted in the next section. Recognizing that
�kj

vk,a
i = �1 /m�a

i,j, where �1 /m�a is the inverse effective-mass
tensor corresponding to band a, Eq. �29� can be rewritten as

�intra =
1

8�s0
	

k
�
a,k�S+�0�a,k��2Aa�
F,k�2q · vd,a

q · vs
,

�30�

where

vd,a
i = e�a�m−1�a

i,jE j �31�

is the “drift velocity” corresponding to the quasiparticles in
band a. For Galilean invariant systems29 vd,a=vs for any
�k ,a� and consequently �intra=�intra. At first glance, it might
appear that vs, which �at least in absence of spin-orbit inter-
action� is determined by the spin current, must be different
than vd,a. However, recall that vs is determined by the ratio
of the spin current to the magnetization. If the same electrons
contribute to the transport as to the magnetization, vs=vd,a
provided the scattering rates and the masses are the same for
all states. These conditions are the conditions for an electron
system to be Galilean invariant. The interband contribution
can be simplified by noting that

�bvk+q,b
i − �avk,a

i = ��bvk+q,b
i − �avk+q,a

i � + ��avk+q,a
i − �avk,a

i � .

�32�

The second term on the right-hand side of Eq. �32� can then
be manipulated exactly as in the intraband case to arrive at

�inter =
1

8�s0
�

a,b�a�b�
	

k
�
b,k�S+�0�a,k��2Aa�
F,k�Ab�
F,k�

�
q · vd,a

q · vs
+ ��inter, �33�

where

��inter =
1

8�s0
�

a,b�a�b�
	

k
�
a,k − q�S+�0�b,k��2

�Aa�
F,k − q�Ab�
F,k�
��bvk,b − �avk,a� · E

q · vs
.

�34�

When Galilean invariance is preserved the quasiparticle ve-
locity and scattering times are the same for all bands, which
implies that ��=0 and hence that �inter=�inter. Although re-
alistic materials are not Galilean invariant, �� is nevertheless
probably not significant because the term between parenthe-
sis in Eq. �34� has an oscillatory behavior prone to cancella-
tion. The degree of such cancellation must ultimately be de-
termined by realistic calculations for particular materials.

With this proviso, we estimate that

� �
1

8�s0
	

k
�
b,k�S+�0�a,k��2Aa�
F,k�Ab�
F,k�

q · vd,a

q · vs
.

�35�

As long as ���0 is justified, the simplicity of Eq. �35� in
comparison to Eqs. �15� and �17� makes of the former the
preferred starting point for electronic structure calculations.
Even when ���0 Eq. �35� may be an adequate platform for
ab initio studies on weakly disordered transition-metal ferro-
magnets and strongly spin-orbit coupled ferromagnetic
semiconductors,30 where � is largely determined by the in-
traband contribution. Furthermore, a direct comparison be-
tween Eqs. �28� and �35� leads to the following observations.
First, for nearly parabolic bands with nearly identical curva-
ture, where the drift velocity is weakly dependent on mo-
mentum or the band index, we obtain ���vd /vs�� and thus
� /� is roughly proportional to the ratio of the total spin
density to the itinerant spin density, in concordance with pre-
dictions from toy models.12 Second, if � /��0 for a system
with purely electronlike carriers, then � /��0 for the same
system with purely holelike carriers because for a fixed car-
rier polarization vd

a and vs reverse their signs under m→
−m. However, if both holelike and electronlike carriers co-
exist at the Fermi energy, then the integrand in Eq. �35� is
positive for some values of a and negative for others. In such
situation it is conceivable that � /� be either positive or
negative. A negative value of � implies a decrease in mag-
netization damping due to an applied current.

As an illustration of the foregoing discussion, in Fig. 4 we
evaluate � /� for �Ga,Mn�As. We find � to be about an order
of magnitude larger than �, which is reasonable because �i�
the local-moment magnetization is larger than the valence-
band hole magnetization, and �ii� the spin-orbit coupling in
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the valence band decreases the transport spin polarization.
Accordingly � is of the order of unity, in qualitative agree-
ment with recent theoretical work.31

VII. TORQUE-CORRELATION FORMULA
FOR THE NONADIABATIC STT

Thus far we have evaluated the nonadiabatic STT using
the bare vertex 
a ,k�S+�b ,k+q�. In this section, we shall
analyze an alternative matrix element denoted 
a ,k�K�b ,k
+q� �see below for an explicit expression�, which may be
better suited to realistic electronic structure calculations.16,32

We begin by making the approximation that the exchange
splitting can be written as a constant spin-dependent shift
Hex=�0Sz. Then, the mean-field quasiparticle Hamiltonian
H�k�=Hkin

�k� +Hso
�k�+Hex can be written as the sum of a spin-

independent part Hkin
�k� , the exchange term, and the spin-orbit

coupling Hso
�k�. With this approximation, we have the identity:


a,k�S+�b,k + q� =
1

�0

a,k��H�k�,S+��b,k + q�

−
1

�0

a,k��Hso

�k�,S+��b,k + q� . �36�

The last term in the right-hand side of Eq. �36� is the gener-
alization of the torque matrix element used in ab initio cal-
culations of the Gilbert damping:


a,k��K��b,k + q� 

1

�0

a,k��Hso

�k�,S+��b,k + q� . �37�

Equation �36� implies that at q=0
b ,k�S+�a ,k�
�
b ,k�K�a ,k� provided that �Ek,a−Ek,b���0, which is trivi-
ally satisfied for intraband transitions but less so for inter-
band transitions.18 For q�0 the agreement between intra-

band matrix elements is no longer obvious and is affected by
the momentum dependence of the band eigenstates. At any
rate, Eq. �29� demonstrates that only q=0 matrix elements
contribute to �intra; therefore �intra has the same value for S
and K matrix elements. The disparity between the two for-
mulations is restricted to �inter, and may be significant if the
most prominent interband matrix elements connect states that
are not close in energy. When they disagree, it is generally
unclear33 whether S or K matrix elements will yield a better
estimate of �inter. The weak spin-orbit limit is a possible
exception, in which the use of K appears to offer a practical
advantage over S. In this regime S generates a spurious in-
terband contribution in the absence of magnetic impurities
�recall Sec. III� and it is only after the inclusion of the
leading-order vertex correction that such deficiency gets
remedied. In contrast, K vanishes identically in absence of
spin-orbit interactions, thus bypassing the pertinent problem
without having to introduce vertex corrections.

Figures 5–7 display a quantitative comparison between
the nonadiabatic STT obtained from K and S, both for the
magnetized two-dimensional electron gas �M2DEG� and
�Ga,Mn�As. Figure 5 reflects the aforementioned overestima-
tion of S in the interband dominated regime of weakly spin-
orbit coupled ferromagnets. In the strong spin-orbit limit,
where intraband contributions dominate in the disorder range
of interest, K and S agree fairly well �Figs. 6 and 7�. Sum-
ming up, insofar as impurity vertex corrections play a minor
role and the dominant contribution to � stems from intraband
transitions, the torque-correlation formula will provide a re-
liable estimate of �.

VIII. CONNECTION TO THE EFFECTIVE FIELD MODEL

As explained in Sec. II we view the nonadiabatic STT as
the change in magnetization damping due to a transport cur-
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β

FIG. 4. �Color online� Comparison of � and � in �Ga,Mn�As for
x=0.08 and p=0.4 nm−3. It follows that � /��8, with a weak de-
pendence on the scattering rate off impurities. If we use the torque-
correlation formula �Sec. VII�, we obtain � /��10.
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FIG. 5. �Color online� M2DEG: comparing S and K matrix el-
ement expressions for the nonadiabatic STT formula in the weakly
spin-orbit coupled regime. Both formulations agree in the clean
limit, where the intraband contribution is dominant. In more disor-
dered samples interband contributions become more visible, and S
and K begin to differ; the latter is known to be more accurate in the
weakly spin-orbit coupled regime.
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rent. The present section is designed to complement that un-
derstanding from a different perspective based on an
effective-field formulation, which provides a simple physical
interpretation for both intraband and interband contributions
to �.

An effective field Heff may be expressed as the variation
in the system energy with respect to the magnetization direc-
tion Hi

eff=−�1 /s0��E /��i. Here we approximate the energy
with the Kohn-Sham eigenvalue sum

E = �
k,a

nk,a
k,a. �38�

The variation in this energy with respect to the magnetization
direction yields

Hi
eff = −

1

s0
�
k,a
�nk,a

�
k,a

��i
+

�nk,a

��i

k,a� . �39�

It has previously been shown that, in the absence of current,
the first term in the sum leads to intraband Gilbert
damping15,34 while the second term produces interband
damping.35 In the following, we generalize these results by
allowing the flow of an electrical current. � and � may be
extracted by identifying the dissipative part of the effective

field with −���̂ /�t−�vs ·��̂ that appears in the LLS equa-
tion.

A. Intraband terms

We begin by recognizing that as the direction of magne-
tization changes in time, so does the shape of the Fermi
surface, provided that there is an intrinsic spin-orbit interac-
tion. Consequently, empty �full� states appear below �above�
the Fermi energy, giving rise to an out-of-equilibrium quasi-
particle distribution. This configuration tends to relax back to

equilibrium but repopulation requires a time �. Due to the
time delay, the quasiparticle distribution lags behind the dy-
namical configuration of the Fermi surface, effectively creat-
ing a friction �damping� force on the magnetization. From a
quantitative standpoint, the preceding discussion means that
the quasiparticle energies 
k,a follow the magnetization adia-
batically, whereas the occupation numbers nk,a deviate from
the instantaneous equilibrium distribution fk,a via

nk,a = fk,a − �k,a� � fk,a

�t
+ ṙa ·

� fk,a

�r
+ k̇ ·

� fk,a

�k
� , �40�

where we have used the relaxation-time approximation. As
we explain below, the last two terms in Eq. �40� do not
contribute to damping in the absence of an electric field and
have thus been ignored by prior applications of the breathing
Fermi-surface model, which concentrate on Gilbert damping.
It is customary to associate intraband magnetization damping
with the torque exerted by the part of the effective field

Hintra
eff = −

1

s0
�
k,a

nk,a
�
k,a

��̂
, �41�

which is lagging behind the instantaneous magnetization.
Plugging Eq. �40� in Eq. �41� we obtain

Hintra,i
eff =

1

s0
�
k,a
�− fk,a

�
k,a

��i
+ �a

� fk,a

�
k,a

�
k,a

��i

�
k,a

�� j

�� j

�t

+ �aṙa
l � fk,a

�
k,a

�
k,a

��i

�
k,a

�� j

�� j

�rl
+ �ak̇j � fk,a

�
k,a

�
k,a

�kj

�
k,a

��i
� ,

�42�

where a sum is implied over repeated Latin indices. The first
term in Eq. �42� is a contribution to the anisotropy field; it
evolves in synchrony with the dynamical Fermi surface and
is thus the reactive component of the effective field. The
remaining terms, which describe the time lag of the effective
field due to a nonzero relaxation time, are responsible for
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FIG. 7. �Color online� GaMnAs: comparison between S and K
matrix element expressions for E� ẑ. The disagreement between
both formulations stems from interband transitions, which are less
important as � increases. Little changes when E � ẑ.
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FIG. 6. �Color online� M2DEG: In the strongly spin-orbit
coupled limit the intraband contribution reigns over the interband
contribution, and accordingly S and K matrix element expressions
display a good �excellent in this figure� agreement. Nevertheless,
this agreement does not guarantee quantitative reliability because
for strong spin-orbit interactions impurity vertex corrections may
play an important role.
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intraband damping. The last term vanishes in crystals with

inversion symmetry because k̇=eE and �
 /�k is an odd func-
tion of momentum. Similarly, if we take ṙ=�
�k� /�k, the
second to last term ought to vanish as well. This leaves us
with the first two terms in Eq. �42�, which capture the intra-
band Gilbert damping but not the nonadiabatic STT. This is
not surprising as the latter involves the coupled response to
spatial variations in magnetization and a weak electric field,
rendering linear order in perturbation theory insufficient �see
Appendix A�. In order to account for the relevant nonlinear-
ity we use ṙ=�
�k−ev ·E�� /�k in Eq. �42�, where v
=�
�k� /�k. The dissipative part of Hintra

eff then reads

Hintra,i
eff,damp =

1

s0
�
k,a

�k,a

� f
k,a

�
k,a

�
k,a

��i

�
k,a

�� j
� �� j

�t
+ vd,a

l �� j

�rl � ,

�43�

where vd,a
i =e�a�m−1�a

i,jE j is the drift velocity corresponding
to band a. Equation �43� may now be identified with

−�intra��̂ /�t−�intravs ·��̂ that appears in the LLS equation.
For an isotropic system this results in

�intra = −
1

s0
�
k,a,i

�k,a
� fk,a

�
k,a
� �
k,a

��i
�2

,

�intra = −
1

s0
�
k,a,i

�k,a
� fk,a

�
k,a
� �
k,a

��i
�2q · vd,a

q · vs
. �44�

Since 
�Sx ,Hso��=��
exp�iSx��Hso exp�−iSx���=�
 /�� for
an infinitesimal angle of rotation � around the instantaneous
magnetization, � in Eq. �44� may be rewritten as

�intra =
�0

2

2s0
�
k,a

�k,a
� fk,a

�
k,a
�
k,a�K�k,a��2

q · vd,a

q · vs
, �45�

where K= �S+ ,Hso� /�0 is the spin-torque operator introduced
in Eq. �37� and we have claimed spin-rotational invariance
via �
�Sx ,Hso���2= �
�Sy ,Hso���2. Using �f /�
�−��
−
F� and
recalling from Sec. VII that Ka,a=Sa,a

+ , Eq. �45� is equivalent
to Eq. �30�; note that the product of spectral functions in the
latter yields a factor of 4�� upon momentum integration.
These observations prove that �intra describes the contribu-
tion from a transport current to the “breathing Fermi-surface”
type of damping. Furthermore, Eq. �44� highlights the impor-
tance of the ratio between the two characteristic velocities of
a current carrying ferromagnet, namely, vs and vd. As ex-
plained in Sec. VI these two velocities coincide in models
with Galilean invariance. Only in these artificial models,
which never apply to real materials, does �=� hold.

B. Interband terms

The Kohn-Sham orbitals are effective eigenstates of a
mean-field Hamiltonian where the spins are aligned in the
equilibrium direction. As spins precess in response to exter-
nal rf fields and dc transport currents, the time-dependent
part of the mean-field Hamiltonian drives transitions between
the ground-state Kohn-Sham orbitals. These processes lead
to the second term in the effective field and produce the
interband contribution to damping.

We thus concentrate on the second term in Eq. �39�,

Hinter
eff = −

1

s0
�
k,a

�nk,a

��̂

k,a. �46�

Multiplying Eq. �46� with ��̂ /�t we get

Hinter
eff,damp · �t�̂ = −

1

s0
�
k,a


k,a��na,k/��̂ · ��̂/�t�

= −
1

s0
�
k,a


k,a � na,k/�t . �47�

The rate of change in the populations of the Kohn-Sham
states can be approximated by the following master equation:

�na,k

�t
= − �

b,k�

Wa,b�nk,a − nk�,b� , �48�

where

Wa,b = 2��
b,k���0Sx�a,k��2�k�,k+q��
b,k� − 
a,k − ��

�49�

is the spin-flip interband transition probability as dictated by
Fermi’s golden rule. Equations �48� and �49� rely on the
principle of microscopic reversibility36 and are rather ad hoc
because they circumvent a rigorous analysis of the
quasiparticle-magnon scattering, which would for instance
require keeping track of magnon occupation numbers. Fur-
thermore, quasiparticle-phonon and quasiparticle-impurity
scatterings are allowed for simplicity by broadening the
Kohn-Sham eigenenergies �see below�. The right-hand side
of Eq. �48� is now closely related to interband magnetization
damping because it agrees37 with the net decay rate of mag-
nons into particle-hole excitations, where the particle and
hole are in different bands. Combining Eqs. �47� and �48�
and rearranging terms, we arrive at

Hinter
eff · �t�̂ =

1

2s0
�

k,k�,a,b

Wa,b�nk,a − nk�,b��
k,a − 
k�,b� .

�50�

For the derivation of �inter it is sufficient to approximate nk,a
as a Fermi distribution in Eq. �50�; here we account for a
transport current by shifting the Fermi seas as nk,a→nk,a
−evk,a ·E�k,a�nk,a /�
k,a, which to leading order yields

Hinter
eff · �t�̂ = −

��

2s0
�

k,a,b
�
b,k + q��0S+�a,k��2

���
b,k+q − 
a,k − ��
�nk,a

�
k,a
�− � + eVb,a�

=
�

8�s0
�

k,a,b
�
b,k + q��0S+�a,k��2Aa

��k,
F�Ab�k + q,
F��− � + eVb,a� , �51�

where we have used Sx= �S++S−� /2 and defined Vb,a
=evk+q,b ·E�k+q,b−evk,a ·E�k,a. In the second line of Eq. �51�
we have assumed low temperatures, and have introduced a
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finite quasiparticle lifetime by broadening the spectral func-
tions of the Bloch states into Lorentzians with the convention
outlined in Eq. �14�: ��x�→A�x� / �2��. Identifying Eq. �51�
with �−�inter�t�̂−�inter�vs ·���̂� ·�t�̂=−�inter�

2

+�inter��q ·vs�, we arrive at

�inter =
1

8�s0
�

a,b�a
�

k,a,b
�
b,k + q��0S+�a,k��2Aa�k,
F�

�Ab�k + q,
F� ,

�inter =
1

8�s0q · vs
�

a,b�a
�

k,a,b
�
b,k + q��0S+�a,k��2Aa

��k,
F�Ab�k + q,
F�Vb,a, �52�

in agreement with our results of Sec. II.

IX. SUMMARY AND CONCLUSIONS

Starting from the Gilbert damping � and including the
influence of an electric field in the transport orbitals semi-
classically, we have proposed a concise formula for the nona-
diabatic spin-transfer torque coefficient � that can be applied
to real materials with arbitrary band structures. Our formula
for � reproduces results obtained by more rigorous
nonlinear-response theory calculations when applied to
simple toy models. By applying this expression to a two-
dimensional electron-gas ferromagnet with Rashba spin-orbit
interaction, we have found that it implies a conductivitylike
contribution to �, related to the corresponding contribution
to the Gilbert damping �, which is proportional to scattering
time rather than scattering rate and arises from intraband
transitions. Our subsequent calculations using a four-band
model have shown that intraband contributions dominate in
ferromagnetic semiconductors such as �Ga,Mn�As. We have
then discussed the � /� ratio in realistic materials and have
confirmed trends expected from toy models, in addition to
suggesting that � and � can have the opposite sign in sys-
tems where both holelike and electronlike bands coexist at
the Fermi surface. Afterward, we have analyzed the spin-
torque formalism suitable to ab initio calculations, and have
concluded that it may provide a reliable estimate of the in-
traband contribution to �; for the interband contribution the
spin-torque formula offers a physically sensible result in the
weak spin-orbit limit but its quantitative reliability is ques-
tionable unless the prominent interband transitions connect
states that are close in energy. Finally, we have extended the
breathing Fermi-surface model for the Gilbert damping to
current carrying ferromagnets and have accordingly found a
complementary physical interpretation for the intraband con-
tribution to �; similarly, we have applied the master equation
in order to offer an alternative interpretation for the interband
contribution to �. Possible avenues for future research con-
sist of carefully analyzing the importance of higher order
vertex corrections in �, better understanding the disparities
between the different approaches to vs, and finding real ma-
terials where � /� is negative.
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APPENDIX A: QUADRATIC SPIN RESPONSE TO AN
ELECTRIC AND MAGNETIC FIELD

Consider a system that is perturbed from equilibrium by a
time-dependent perturbation V�t�. The change in the expec-
tation value of an operator O�t� under the influence of V�t�
can be formally expressed as

�
O�t�� = 
�0�U†�t�O�t�U�t���0� − 
�0�O�t���0� ,

�A1�

where ��0� is the unperturbed state of the system,

U�t� = T exp�− i	
−


t

V�t��dt�� �A2�

is the time-evolution operator in the interaction representa-
tion, and T stands for time ordering. Expanding the exponen-
tials up to second order in V, we arrive at

�
O�t�� = i	
−


t

dt�
�O�t�,V�t����

−
1

2
	

−


t

dt�dt�
��O�t�,V�t���,V�t���� . �A3�

For the present work, O�t�→Sa�a=x ,y ,z� and

V�t� = −	 drj · A�r,t� +	 drS · Hext�r,t� , �A4�

where A is the vector potential, Hext is the external magnetic
field, and j is the current operator. Plugging Eq. �A4� into Eq.
�A3� and neglecting O�A2� ,O�Hext

2 � terms, we obtain

�Sa�x� = �
b
	 dx�	S,j

a,bAb�x�� + �
b
	 dx�	S,S

a,bHext
b �x��

+ �
b,c
	 dx�dx�	S,S,j

a,b,cAb�x��Hext
c �x�� , �A5�

where x
�r , t� and �dx�
�−


 dt��dr�. The linear and qua-

dratic response functions introduced above are defined as

	S,j
a,b�x,x�� = i
�Sa�x�, jb�x�����t − t��� ,

	S,S
a,b�x,x�� = i
�Sa�x�,Sb�x�����t − t��� ,
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	S,S,j
a,b,c�x,x�,x�� = 
��Sa�x�, jb�x���,Sc�x�����t − t����t� − t���

+ 
��Sa�x�,Sb�x���, jc�x�����t − t����t� − t��� ,

�A6�

where we have used T�F�t�G�t���=F�t��G�t����t�− t��
+G�t��F�t����t�− t��, � being the step function. 	S,j is the
spin density induced by an electric field in a uniform ferro-
magnet, and it vanishes unless there is intrinsic spin-orbit
interaction. 	S,S is the spin density induced by an external
magnetic field. 	S,S,j is the spin density induced by the com-
bined action of an electric and magnetic field �see Fig. 8 for
a diagrammatic representation�; this quantity is closely re-
lated to �vs ·q�	�2�, introduced in Sec. II.

APPENDIX B: FIRST ORDER IMPURITY VERTEX
CORRECTION

The aim of this Appendix is to describe the derivation of
Eq. �21�. We shall begin by evaluating the leading-order ver-
tex correction to the Gilbert damping. From there, we shall
obtain the counterpart quantity for the nonadiabatic STT by
shifting the Fermi occupation factors to first order in the
electric field.

The analytical expression for the transverse spin response
with one vertex correction is �see Fig. 9�

	̃+,−
QP,�1� = − V

�0
2

2
T�

�n

	
k,k�

uiGa�i�n,k�Sa,b
+ Gb�i�n + i�,k + q�

�Sa,b�
i Gb��i�n + i�,k� + q�Sb�,a�

− Ga��i�n,k��Sa�,a
i ,

�B1�

where V is the volume of the system, and the minus sign
originates from fermionic statistics. Using the Lehmann rep-
resentation of the Green’s functions G and performing the
Matsubara sum, we get

	̃+,−
QP,�1� = − V

�0
2

2
	

k,k�
ui2 Re�Sa,b

+ Sb,b�
i Sb�,a�

− Sa�,a
i �

�	
−



 d
1d
1�d
2d
2�

�2��4 Aa�
1,k�Aa��
1�,k��

�Ab�
2,k + q�Ab��
2�,k� + q�

�� f�
1�
�
1 − 
1���i� + 
1 − 
2��i� + 
1 − 
2��

+ �
1 ↔ 
2,
1� ↔ 
2�,

� ↔ − �
�� , �B2�

where twice the real part arose after absorbing two of the
terms coming from the Matsubara sum. Next, we apply i�
→�+ i0+ and take the imaginary part:

	̃+,−
QP,�1� = V

�0
2

2
2�	

k,k�
ui Re�Sa,b

+ Sb,b�
i Sb�,a�

− Sa�,a
i �

�	
−



 d
1d
1�d
2d
2�

�2��4 Aa�
1,k�Aa��
1�,k��

�Ab�
2,k + q�Ab��
2�,k� + q�

�
f�
1�


1 − 
1�
���� + 
1 − 
2�

� + 
1 − 
2�
+

��� + 
1 − 
2��
� + 
1 − 
2

− �� → − � ,

q → − q
�� , �B3�

where we used 1 / �x− i��= PV�1 /x�+ i���x�, and invoked
spin-rotational invariance to claim that terms with
Sa,b

x Sb,b�
i Sb�,a�

y Sa�,a
i will vanish. Integrating the delta functions

we arrive at

	̃+,−
QP,�1� = V

�0
2

2
	

k,k�
ui Re�. . .�	

−



 d
1�d
2d
2�

�2��3

�
f�
2�Aa�
2,k�Aa��
1�,k��

�
2 − 
2���
2 − 
1��
�Ab�
2 + �,k + q�

�Ab��
2� + �,k� + q� + Ab�
2� + �,k + q�

�Ab��
2 + �,k� + q�� − �� → − � ,

q → − q
� . �B4�

The next step is to do the 
1� and 
2� integrals, taking ad-
vantage of the fact that for weak disorder the spectral func-
tions are sharply peaked Lorentzians �in fact at the present
order of approximation one can take regard them as Dirac
delta functions�. The result reads

	̃+,−
QP,�1� = V

�0
2

2
	

k,k�
ui Re�. . .�	

−



 d
2

2�

f�
2�Aa�
2,k�

2 − 
k�,a�

��Ab�
2 + �,k + q�

2 + � − 
k�+q,b�

+
Ab��
2 + �,k� + q�


2 + � − 
k+q,b
�

− �� → − �,q → − q� . �B5�

S+ S −

FIG. 9. Feynman diagram for the first-order vertex correction.
The dotted line with a cross represents the particle-hole correlation
mediated by impurity scattering.

S+ S −

v.A

FIG. 8. Feynman diagram for 	S,S,j. The dashed lines corre-
spond to magnons, whereas the wavy line represents a photon.
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By making further changes in variables, this equation can be
rewritten as

	̃+,−
QP,�1� = V

�0
2

2
	

k,k�
ui Re�. . .�	

−



 d
2

2�

�
�f�
2� − f�
2 + ���Aa�
2,k�


2 − 
k�,a�

��Ab�
2 + �,k + q�

2 + � − 
k�+q,b�

+
Ab��
2 + �,k� + q�


2 + � − 
k+q,b
� .

�B6�

This is the first-order vertex correction for the Gilbert damp-
ing. In order to obtain an analogous correction for the nona-
diabatic STT, it suffices to shift the Fermi factors in Eq. �B6�
as indicated in the main text. This immediately results in Eq.
�21�.

APPENDIX C: DERIVATION OF EQ. (26)

Let us first focus on the first term of Eq. �17�, namely,

Eiqj	
k

��
a,k�S+�b,k��2 + �
a,k�S−�b,k��2�AaAb�vk,a
i vk,b

j �k,a.

�C1�

We shall start with the azimuthal integral. It is easy to show
that the entire angle dependence comes from viv j  kikj, from
which the azimuthal integral vanishes unless i= j.

Regarding the �k� integral, we assume that �kF ,�0 ,1 /�
�
F; otherwise the analytical calculation is complicated and
must be tackled numerically. Such assumption allows us to
use �k→N2D�−



 d
. For interband transitions �a�b�, AaAb�
contributes mainly through the pole at 
F,a; thus all the
slowly varying factors in the integrand may be set at the
Fermi energy. For intraband transitions �a=b�, AaAa� has no
peak at the Fermi energy; hence it is best to keep the slowly
varying factors inside the integrand.

The above observations lead straightforwardly to the fol-
lowing result:

Eiqj	
k

��
a,k�S+�b,k��2 + �
a,k�S−�b,k��2�AaAb�vk,a
i vk,b

j �k,a

� E · q
m2

8m+m−
�1 +

�0
2

b2 � �
F,−�−�+ − 
F,+�+�−�
b3

− E · q�m2

m+
2

1

2

�2kF
2

b2 �1 +
�0

2

b2 ��+
2

+
m2

m−
2

1

2

�2kF
2

b2 �1 +
�0

2

b2 ��−
2� . �C2�

The second and third lines in Eq. �C2� come from interband
and intraband transitions, respectively. The latter vanishes in
absence of spin-orbit interaction, leading to a 2D version of
Eq. �20�. Since the band splitting is much smaller than the
Fermi energy, one can further simplify the above equation
via �+��−→�.

Let us now move on the second term of Eq. �17�, namely,

Eiqj	
k

Re�
b,k�S−�a,k�
a,k�S+�kj
�b,k�

+ �S+ ↔ S−��AaAbvk,a
i �k,a. �C3�

Most of the observations made above apply for this case as
well. For instance, the azimuthal integral vanishes unless i
= j. This follows from a careful evaluation of the derivatives
of the eigenstates with respect to momentum; �kj

�
=sin���cos���kj /k2�0���� /2� is a useful relation in this
regards while �kj

� plays no role. As for the �k� integral, we
no longer have the derivative of a spectral function but rather
a product of two spectral functions; the resulting integrals
may be easily evaluated using the method of residues. The
final result reads

Eiqj	
k

Re�
b,k�S−�a,k�
a,k�S+�kj
�b,k�

+ �S+ ↔ S−��AaAbvk,a
i �k,a

� − E · q� m

32m−

�2kF
2�0

2

b6 �1 +
�−

�+
�

+
m

32m+

�2kF
2�0

2

b6 �1 +
�+

�−
��

+ E · q� m

4m+

�2kF
2�0

2

b4 �+
2 +

m

4m−

�2kF
2�0

2

b4 �−
2� . �C4�

The first line in Eq. �C4� stems from interband transitions,
whereas the second comes from intraband transitions; both
vanish in absence of spin-orbit interaction. Once again we
can take �+��−→�. Combining Eqs. �C2� and �C4� one can
immediately reach Eq. �26�.
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